egcd

Release 1.0.0

Andrei Lapets

Mar 11, 2024

CONTENTS

1 Installation and Usage 3
1.1 Examples oo e e e e e e e e e e 3

2 Development 5
2.1 Documentation e 5

2.2 Testingand Conventionsl e e 5

2.3 0 ContribUtiONS o v v s e 6

24 Versioning e e e e 6

2.5 Publishing e e e e e 6
251 egedmodule. L e e e e e e 6

Python Module Index 9
Index 11

egcd, Release 1.0.0

Pure-Python extended Euclidean algorithm implementation that accepts any number of integer arguments.

CONTENTS 1

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://badge.fury.io/py/egcd
https://egcd.readthedocs.io/en/latest/?badge=latest
https://github.com/lapets/egcd/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/lapets/egcd?branch=main

egcd, Release 1.0.0

2 CONTENTS

CHAPTER
ONE

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install egcd

The library can be imported in the usual way:

from egcd import egcd

1.1 Examples

The function egcd is a pure-Python implementation of the extended Euclidean algorithm that can be viewed as an ex-
pansion of the functionality and interface of the built-in math.gcd function. When it is supplied two integer arguments
a and b, it returns a tuple of the form (g, s, t) where the three integers in the tuple satisfy the identity (a * s) +
(b * 1) =g

>>> eged(1l, 1)

(1, 0, 1)
>>> egcd(12, 8)
(4,]-; _1)

>>> egcd(23894798501898, 23948178468116)

(2, 2437250447493, -2431817869532)

>>> egcd(pow(2, 50), pow(3, 50))

(1, -260414429242905345185687, 408415383037561)

However, any number of integer arguments can be supplied. When no arguments are supplied, the resultis (0,) (just as
the expression math.gcd() evaluates to 0 in Python 3.9 and higher). In all other cases, the result contains the greatest
common divisor of all the supplied integers and the coefficients of the generalized form of the associated identity:

>>> egcd(2, 4, 3, 9)

(1, _1’ 0; 1, 0)

>>> 1 == ((-1) *2) + (0 %4 + (1 %3)+ 0 *9
1

A succinct way to extract the greatest common divisor and the coefficients is to take advantage of Python’s support for
iterable unpacking via the asterisk notation:

>>> bs = (26, 16, 34)
>>> (g, *cs) = egcd(*bs)
>>> (g, cs)

(continues on next page)

https://pypi.org/project/egcd
https://egcd.readthedocs.io/en/1.0.0/_source/egcd.html#egcd.egcd.egcd
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://docs.python.org/3/library/math.html#math.gcd
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://peps.python.org/pep-3132/
https://docs.python.org/3/reference/expressions.html#expression-lists

egcd, Release 1.0.0

(continued from previous page)

(2, [_3, 5! ®])
>>> g == sum(c * b for (c, b) in zip(cs, bs))
True

Chapter 1. Installation and Usage

CHAPTER
TWO

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, 1int, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

2.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

2.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/egcd/egcd.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/egcd

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.readthedocs.io

egcd, Release 1.0.0

2.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

2.4 Versioning

Beginning with version 0.1.0, the version number format for this library and the changes to the library associated with
version number increments conform with Semantic Versioning 2.0.0.

2.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

2.5.1 egcd module

Pure-Python extended Euclidean algorithm implementation that accepts any number of integer arguments.

egcd.eged. eged(*Fintegers: int) — Tuplelint, ...]

To support the most typical use case, this function accepts two integers a and b and returns a tuple of the form
(g, s, t) such that g is the greatest common divisor of a and b and such that the identity g == (a * s) +
(b * t) is satisfied.

>>> egcd(l, 1)

(1, 0, 1)

>>> egcd(12, 8)

4, 1, -1

>>> 4 == (1 * 12) + ((-1) * 8)

True

>>> egcd(23894798501898, 23948178468116)

(continues on next page)

6 Chapter 2. Development

https://github.com/lapets/egcd
https://semver.org/#semantic-versioning-200
https://pypi.org/project/egcd
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

egcd, Release 1.0.0

(continued from previous page)

(2, 2437250447493, -2431817869532)
>>> egcd(pow(2, 50), pow(3, 50))
(1, -260414429242905345185687, 408415383037561)

This implementation has been adapted from the algorithms listed below (and subsequently expanded to support
any number of integer inputs):

» Extended Euclidean Algorithm on Brilliant.org,

¢ Modular inverse on Rosetta Code,

¢ Algorithm Implementation/Mathematics/Extended Euclidean algorithm on Wikibooks, and
* Extended Euclidean algorithm on Wikipedia.

This function can accept any number of integer arguments (as the built-in function math.gcd does in Python
3.9 and higher). In general, the greatest common divisor of all the arguments is returned (along with coefficients
that satisfy the generalized form of the associated identity).

>>> eged(2, 2, 3)

(11 01 _1! 1)
>>> egcd(13, 16, 17)
(1! 5; _4) ®)

>>> egcd(2, 4, 3, 9)

a, -1, 0, 1, ®

>>> 1 == ((-1) *2) + (O = 4) + (1L * 3) + (0@ * 9)
True

This function conforms to the behavior of math.gcd when all arguments are 0 (returning O as the greatest
common divisor) or when any of the arguments are negative (returning the largest positive integer that is a divisor
of all the arguments).

>>> egcd(0, 0)

@, 1, ®
>>> egcd(-25, -15)
(51 11 _2)

>>> egcd(-9, 6, -33, -3)
(3! 0! 01 ®! _1)

To conform to the behavior of math.gcd in its base cases (in Python 3.9 and higher), this function returns (0,)
when there are no arguments and the sole argument paired with the coefficient 1 when only one argument is
supplied.

>>> egcd()
©,)

>>> eged(5)
G, D

A succinct way to extract the greatest common divisor and the coefficients is to take advantage of Python’s support
for iterable unpacking via the asterisk notation.

>>> bs = (26, 16, 34)
>>> (g, *cs) = egcd(*bs)
>>> (g, c€s)

2, [-3, 5, 0D

(continues on next page)

2.5. Publishing 7

https://brilliant.org/wiki/extended-euclidean-algorithm/
https://brilliant.org
https://rosettacode.org/wiki/Modular_inverse
https://rosettacode.org
https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm
https://en.wikibooks.org
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org
https://docs.python.org/3/library/math.html#math.gcd
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://docs.python.org/3/library/math.html#math.gcd
https://docs.python.org/3/library/math.html#math.gcd
https://peps.python.org/pep-3132/
https://docs.python.org/3/reference/expressions.html#expression-lists

egcd, Release 1.0.0

(continued from previous page)

>>> g == sum(c * b for (c, b) in zip(cs, bs))
True

If an argument is not an integer, an exception is raised.

>>> egcd(1.2, 3, 4)
Traceback (most recent call last):

TypeError: 'float' object cannot be interpreted as an integer

>>> egcd(l, 2.3)
Traceback (most recent call last):

TypeError: 'float' object cannot be interpreted as an integer

The example below tests the behavior of this function over a range of input pairs using the built-in math.gcd
function.

>>> from math import gcd

>>> from itertools import product

>>> checks = []

>>> for (a, b) in product(range(-1000, 1000), range(-1000, 1000)):
(g, s, t) = egcd(a, b)
assert(g == gcd(a, b))
assert(g == (a * s) + (b * 1))

The more complex example below tests the behavior of this function over a range of input sequences. The function
gcd_ below is introduced to ensure that the example is compatible with Python 3.7 and 3.8.

>>> from functools import reduce
>>> gcd_ = lambda *bs: reduce(gcd, bs, bs[0]) # Backwards-compatible.
>>> checks = []
>>> for k in range(l, 5):
for bs in product(*([range(-50 // k, 50 // k)] * k)):

(g, *cs) = egcd(*bs)

assert(g == gcd_(*bs))

assert(g == sum(c * b for (c, b) in zip(cs, bs)))

8 Chapter 2. Development

https://docs.python.org/3/library/math.html#math.gcd

PYTHON MODULE INDEX

e
egcd.egcd, 6

egcd, Release 1.0.0

10 Python Module Index

E

egcd () (in module egcd.egcd), 6
egcd.egcd
module, 6

M

module
egcd.egcd, 6

INDEX

11

	Installation and Usage
	Examples

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	egcd module

	Python Module Index
	Index

